Tackling Climate Change with Machine Learning

Reference Type:

Document

Formatted Reference:

Published In:

Climate Change AI

Year:

2019

Author(s):

David Rolnick
Priya L. Donti
Lynn H. Kaack
Kelly Kochanski
Alexandre Lacoste
Kris Sankaran
Andrew Slavin Ross
Nikola Milojevic-Dupont
Natasha Jaques
Anna Waldman-Brown
Alexandra Luccioni
Tegan Maharaj
Evan D. Sherwin
S. Karthik Mukkavilli
Konrad P. Kording
Carla Gomes
Andrew Y. Ng
Demis Hassabis
John C. Platt
Felix Creutzig
Jennifer Chayes
Yoshua Bengio

Download Reference:

Search for the Publication In:

Source:

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.