top of page

Operational greenhouse-gas emissions of deep learning in digital pathology: a modelling study

Reference Type: 

Journal Article

Vafaei Sadr, Alireza, Roman Bülow, Saskia von Stillfried, Nikolas E J Schmitz, Pourya Pilva, David L Hölscher, Peiman Pilehchi Ha, Marcel Schweiker, and Peter Boor. 2024. “Operational Greenhouse-Gas Emissions of Deep Learning in Digital Pathology: A Modelling Study.” The Lancet Digital Health 6 (1): e58–69.

Deep learning is a promising way to improve health care. Image-processing medical disciplines, such as pathology, are expected to be transformed by deep learning. The first clinically applicable deep-learning diagnostic support tools are already available in cancer pathology, and their number is increasing. However, data on the environmental sustainability of these tools are scarce. We aimed to conduct an environmental-sustainability analysis of a theoretical implementation of deep learning in patient-care pathology.
For this modelling study, we first assembled and calculated relevant data and parameters of a digital-pathology workflow. Data were breast and prostate specimens from the university clinic at the Institute of Pathology of the Rheinisch-Westfälische Technische Hochschule Aachen (Aachen, Germany), for which commercially available deep learning was already available. Only specimens collected between Jan 1 and Dec 31, 2019 were used, to omit potential biases due to the COVID-19 pandemic. Our final selection was based on 2 representative weeks outside holidays, covering different types of specimens. To calculate carbon dioxide (CO2) or CO2 equivalent (CO2 eq) emissions of deep learning in pathology, we gathered relevant data for exact numbers and sizes of whole-slide images (WSIs), which were generated by scanning histopathology samples of prostate and breast specimens. We also evaluated different data input scenarios (including all slide tiles, only tiles containing tissue, or only tiles containing regions of interest). To convert estimated energy consumption from kWh to CO2 eq, we used the internet protocol address of the computational server and the Electricity Maps database to obtain information on the sources of the local electricity grid (ie, renewable vs non-renewable), and estimated the number of trees and proportion of the local and world's forests needed to sequester the CO2 eq emissions. We calculated the computational requirements and CO2 eq emissions of 30 deep-learning models that varied in task and size. The first scenario represented the use of one commercially available deep-learning model for one task in one case (1-task), the second scenario considered two deep-learning models for two tasks per case (2-task), the third scenario represented a future, potentially automated workflow that could handle 7 tasks per case (7-task), and the fourth scenario represented the use of a single potential, large, computer-vision model that could conduct multiple tasks (multitask). We also compared the performance (ie, accuracy) and CO2 eq emissions of different deep-learning models for the classification of renal cell carcinoma on WSIs, also from Rheinisch-Westfälische Technische Hochschule Aachen. We also tested other approaches to reducing CO2 eq emissions, including model pruning and an alternative method for histopathology analysis (pathomics).
The pathology database contained 35 552 specimens (237 179 slides), 6420 of which were prostate specimens (10 115 slides) and 11 801 of which were breast specimens (19 763 slides). We selected and subsequently digitised 140 slides from eight breast-cancer cases and 223 slides from five prostate-cancer cases. Applying large deep-learning models on all WSI tiles of prostate and breast pathology cases would result in yearly CO2 eq emissions of 7·65 metric tons (t; 95% CI 7·62–7·68) with the use of a single deep-learning model per case; yearly CO2 eq emissions were up to 100·56 t (100·21–100·99) with the use of seven deep-learning models per case. CO2 eq emissions for different deep-learning model scenarios, data inputs, and deep-learning model sizes for all slides varied from 3·61 t (3·59–3·63) to 2795·30 t (1177·51–6482·13. For the estimated number of overall pathology cases worldwide, the yearly CO2 eq emissions varied, reaching up to 16 megatons (Mt) of CO2 eq, requiring up to 86 590 km2 (0·22%) of world forest to sequester the CO2 eq emissions. Use of the 7-task scenario and small deep-learning models on slides containing tissue only could substantially reduce CO2 eq emissions worldwide by up to 141 times (0·1 Mt, 95% CI 0·1–0·1). Considering the local environment in Aachen, Germany, the maximum CO2 eq emission from the use of deep learning in digital pathology only would require 32·8% (95% CI 13·8–76·6) of the local forest to sequester the CO2 eq emissions. A single pathomics run on a tissue could provide information that was comparable to or even better than the output of multitask deep-learning models, but with 147 times reduced CO2 eq emissions.
Our findings suggest that widespread use of deep learning in pathology might have considerable global-warming potential. The medical community, policy decision makers, and the public should be aware of this potential and encourage the use of CO2 eq emissions reduction strategies where possible.
German Research Foundation, European Research Council, German Federal Ministry of Education and Research, Health, Economic Affairs and Climate Action, and the Innovation Fund of the Federal Joint Committee.

Download Reference:

Search for the Publication In:

Formatted Reference:

bottom of page